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Abstract. The response function of some simple fractal circuit systems are discussed. In 
addition to the ubiquitous constant phase angle response (CPA). a second behaviour dass is 
identified and its dynamic scaling equation determined. The conditions under which each of 
the invariant behaviour classes occur have been derived. Computed response functions are 
used to illustrate the formal theoretical results. An outline is also given of the relationship 
of the circuit systems to experimental dielectric responses for which both behaviour classes 
can be observed. 

1. Introduction 

Attention has been paid, since the work of Liu (1985) to the development of fractional 
power-law dispersive behaviour in the impedance or admittance of electrical circuits 
which contain self-similar scaling. Liu (1985) showed that for some specific circuits of 
this type the electrical impedance (Z) at radian frequency w could be expressed (over a 
limited frequency range) in terms of the equivalent impedance at the scaled frequency 
( E m )  in the form 

z ( W )  = K Z ( E 0 ) .  (1) 
This equation defines the existence of dynamic scaling in the circuit systems examined, 
i.e. the impedance (admittance) is invariant with respect to a frequency rescaling 
w + Ew, up to a magnitude scaling factor K (Alexander and Orbach 1982, Rammal and 
Toulouse 1983). Its solution takes the form 

Z(w) (iw)-” (2) 

V = h K / h E  (3) 

Y(w)  = {Z(w)}-’ 0~ (iw)”. (4) 

as w+ 0, with 

which may be expressed in terms of the admittance, Y(w), as 

When v > 0 the response defined by equations (3) and (4) exhibits a constant phase 
angle (CPA) and is the typical result obtained for a number of circuit models investigated 
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since Liu (1985) (see for example Kaplan and Gray (1985), Dissado and Hill (1988), 
Geertsma et al(1989), Pajkossy and Nyikos (1989) and Nyikos and Pajkossy (1985)). 
However, in some specific instances U < 0 and the results either take the form (Hill and 
Dissado (1988), Dissado and Hill (1989)) 

R M Hili et ai 

~ ( w )  = 1 - a(io)lpl W + O  ( 5 )  

[Y(w)/iw] = c(w) 0~ 1 - b(iw)l’l 0-0 (6)  

or 

where C(w) is the capacitance. It should be noted that equations (5) and (6) apply to 
different model constructions and are not inversely related. In both the above cases 
the anomalous frequency term appears as a vanishingly small correction to the real 
component of the complex impedance, equation (3, or capacitance, equation (6), as 
w approaches zero. For this reason it may often have been neglected in other inves- 
tigations. However, it should be noted that the same term dominates the frequency 
dependenceof the imaginarycomponentsofZ(w)and C(w) in the low frequencylimits. 
Since these are directly observable quantities, a proper description of the response does 
not allow the anomalous frequency term to be regarded only as a correction. Instead 
equations (5) and (6) define a second class of anomalous response arising from self- 
similar scaling in the circuit system. This class of behaviour was termed fractional power 
law response (FPR) in Dissado and Hill (1989). 

Although the appearance of anomalous frequency dispersions in the response of 
self-similar circuit models isinteresting in itsownright, their importanceextends beyond 
the specific systems for which they were constructed. For example, it has long been 
recognised that CPA behaviour, equation (2), occurs in the impedance response of a wide 
range of materials such as biological tissues (Cole 1972, Pethig 1979), dielectrics and 
systems intermediate between perfect insulators and good conductors (Jonscher 1983). 
Dielectric (impedance) responses are often described by equivalent circuits (Macdonald 
1987) and the recognition that CPA responses could be identified with self-similarity led 
to the application of this concept to a number of microscopic models (e.g. Klafter and 
Schlesinger 1986, Kohler and Blumen 1987, Niklasson 1987, Dissado and Hill 1989). 
The FPR behaviour, equation (6). has also been identified in dielectric responses 
(Jonscher 1983, Dissado et ai 1985) and related to self-similarity in a microscopic model 
(Dissado and Hill 1989). 

It is our aim here to aid the development of self-similar models by elucidating the 
formal rules governing the appearance of each of the two behaviour classes, i.e. CPA and 
FPR, and particularly the conditions under which FPR will occur. Limitations on the 
frequency range over which the anomalous frequency dispersions can be observed will 
also be discussed. Our conclusions will be illustrated by reference to computations of 
the impedance response of a basic scaled circuit system. 

2. Response functions of scaled systems 

2.1, Circuit approach 

The concepts of dynamic scaling in electrical circuits vd l  be illustrated by means of 
the two examples shown in figure 1 .  These examples have been chosen because they 
represent two of the basic possibilities inherent in circuit systems; that in which the 
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Figure 1. Schematic representation of two scaled 
electrical circuits. In (a) the sub-circuits are series 
resistance-capacitance units and the admittance 
sums as aself-similar series In (b) the sub-circuits 
are parallel resistancecapacitance units and the 
impedance sums as a self-similar series. 

voltage drop across scaledsub-unitsisconstant, figure l(a), and that in which the current 
through the sub-units is held constant, figure I(b). Other more complex arrangements 
can be constructed and these will be discussed elsewhere. In general however, the 
response of these complex circuits approximates to one or other of the examples chosen 
over a limited frequency range (e.g. Liu 1985, Dissado and Hill 1988). 

In the example of figure l(a) the scaled sub-units are connected in parallel and this 
will be termed the parallel mode, PM. The admittance of the system can be written as 

where i = (-l)''', a and p are scaling parameters for the elementary capacitance C and 
resistance R units respectively, and the summation is over the N elements in the circuit. 
Subsequently throughout this paper we will define the frequency in terms of the charac- 
teristic frequency wo = (RC)-' of the elemental sub-circuit. Using the same notation, 
the impedance of the series connected circuit (SM) of figure l(b) can be expressed as 

We note here a fundamental inter-relationship between the two models. By expressing 
equation (7a) in terms of the system capacitance C(w)  we find 

It is therefore clear that the behaviour of C(o/wo)/C in the parallel mode is the same 
as that of Z(w/wo)/R in the series mode providing the scaling parameters a and /3 are 
interchanged. In the rest of this paper we will concentrate our attention on equation (8), 
since the above inter-relationship allows the complementary behaviour for the parallel 
model to be deduced immediately. 

Inspiteofthescaledcircuit elementsit may not beimmediatelyobviousthatequation 
(8)definesasystem withdynamicself-similarity. Inorder tomake thisexplicitweextract 
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the first term of the sum, Zo(w/wo), and renumber the terms in the residualsummation. 
In the limit as N tends to infinity we find 

R M Hill et a1 

Z ( O / W O )  = Zo(w/wo) + P Z ( ~ P 4 w o ) .  (9) 

Zo(w/wo) e2 B Z ( c u S W / ~ o )  (10) 

Thus, provided that 

we recover the dynamic scaling equation (1) with fi  = K and a;6 = E .  This procedure, 
however, exposes the existence of limits to the frequency range over which the CPA and 
FPR solutions can be expected to apply. 

Consider first the CPA solution 
z (w/w, )  = (io/o0)-” 

with 
Y = In@/(ln (Y + hP) > 0 

which requires either p > 1 and a$ > 1 or ,Cl < 1 and a;S < 1. This behaviour will 
dominate over both the real and imaginary components of the Z ~ ( w / w o )  term 

Zo(o /wo)  = R/(1 + iw/wo) = R[1- iw/wo]/(l + [ w / w O ] ’ )  (13) 
as o approaches zero and thus fulfils equation (10) at these frequencies. The CPA 
behaviour is thus a valid result for low frequencies but only as long as N is infinite. In 
real systems where Nis finite the divergence in equation (11) will be cut off below a 
limiting frequency. The CPA behaviour, therefore, can be expected to exist only over a 
limited frequency range, a point which will be taken up later. 

Making use of the inter-relationship between the series model and the parallel model 
allows us to express the PM admittance in the form 

Y(w/wo) = (io/w0)’. (14) 
This is the same as the admittance in the series model, i.e., the inverse of equation (1 l) ,  
and hence there is a complete equivalence of the two models on interchanging a and /3 
for the CPA range of solutions. 

If 6 < 1 and Cup > 1 or vice versa, the solution to equation (1) takes the form 

~ ( w )  = (io)I’I (15) 

[ V I  = l np / (h  CY + 1np)l. (16) 
Substitution of equation (15) into equation (9) shows that as w + 0 only the imaginary 
component satisfies the inequality of equation (10). Since the real component of (iw)l” 
approaches zero as w+ 0 the real component of the solution to equation (9) will be 
dominated by that of Z(w/wo),  i.e. R. Thus (iw)l’l cannot, on its own, be a solution to 
equation (9), nonetheless its contribution cannot be neglected since it dominates the 
imaginary component at lowfxequencies. It will be shown later that asolution is allowed 
only when p < 1 and ~$3 > 1 and that its form is the FPR behaviour of equation (5). As 
for the CPA response, the FPR behaviour satisfies a dynamic scaling equation, only now 
equation (1) is replaced by the new equation 

~ < 1 , 5 > 1  (17) 

which has not been explicitly recognised heretofore. The complementary scaling 

with 

Z(0 = 0) - Z(0) = K [ Z ( W  = 0) - Z(&0)] 
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equation for the parallel model is obtained by replacing the impedance Z in the equation 
(17) by the capacitance C, leading to a solution of the form of equation (6) .  With this 
class of behaviour the admittance of the parallel model does not exhibit the same form 
of response as that of the series model. Thus unlike the CPA result the two models differ 
in the form of their response when they obey the FPR scaling equation (17). 

2.2. Fractal properties in scaling 

In this section we show how systems represented by fractal circuits may be reduced to 
the self-similar ladder circuits (Connor 1972, Clerc eta1 1990) of figure 1 and relate the 
scale ratios of the previous section to appropriate fractal dimensions. To this end we 
consider only the two simple types of circuit that we discussed above, the parallel model 
and the series model of impedance. Connection to the original circuit can be made via 
the amplitude scale ((U) and the time scale ((UP = E )  ratios between successive levelsp 
of the embedding. Since (U refers to a static property of the system it can be related to 
the 'size' L, of the embeddingp by a fractal dimension dr appropriate to the geometry 
of the system, i.e. 

(U= (Lp/Lp-l)df. (18) 

E =  (L,/L,-l)d~ (19) 

In fractal circuit systems 5 is also related to a dimension which we may term d,, i.e. 

and hence the CPA exponent, equation (12), for the impedance response takes the 
general form given by Liu (1986) 

v = 1 - dr/d,. (20) 
Note that d, need not be a function of dr, for example in the electrode surface model 
proposedby Liu (1985)and KaplanandGray(1985)d,isunity(Liu1986)andthefractal 
construction is that of a Cantor bar in one dimension with the other two dimensions 
remaining Euclidean so that the overall fractal dimension of the system is dr + 2, with 
dr < 1. On the other hand, the Sierpinski carpet electrode considered by Sapoval (1987) 
and by Hill and Dissado (1988) has a fractal surface dimension D, and K takes the form 

K = N(L,/L,-,) = (Lp/L,-l)l~Dp 

E =  (Lp/Lp-l)-' (22) 

(21) 

where Nis the number of new pores of side L, generated from each pore in the @ - 1)th 
embeddingwith L,/L,_, < 1. In this case 

andthuswhenD, > 1,the~~~behaviourisobtainedwithd~ = -(Dp - l)andd,= -1, 
i.e. 

U = 2  - D, = 3 - D, (23) 
where D, is the volume fractal dimension. When, however, D, < 1, then K < 1,5 > 1 
and the FPR behaviour is found with 

I v 1 = 1 - D, ( 2 4  
from equation (16). 

The two examples considered show how simple fractal circuits can be reduced to one 
of the two general forms examined here and in what sense the logarithms of the scale 
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ratios can be considered as related to the fractal dimension of the system geometry and 
timescale. More complex fractal circuits than the examples given here also reduce to 
one or other of the two forms considered, at least over a finite range of embeddings. It 
should be noted that in these cases d,  may take other values than that of unity as found 
in the two examples quoted, e.g. for a D-dimensional Sierpinski gasket (Liu 1986) d, is 
given by In(D + 3)/ln 2. In order to retain generality in our discussion, and not be tied 
to a specific fractal construction, we have developed our arguments in the scaled circuit 
formalism for arbitrary scale ratios CY and p in capacitance and resistance respectively. 

R M Hill et al 

2.3. Some formal solutions 

In section 2.1 we considered our system to be composed of a scaled sum of elementary 
circuit elements which lead to a govemingequation, equation (8). of the form 

N 

SN(x) = 2 K"f(5"x) (25) 
"=U 

where x = io/wo. In the basic circuit construction of section 2.lf(x) has the formf(x) = 
(1 + x ) - ' ,  however the sub-units may in general be much more complex that those of 
figure 1 with different functional forms forf(x). Here we consider some forms forf(x) 
which are analytically solvable in the limit of N +  m. 

2.3.1. Polynomial functions. Many functions can be expressed as infinite order poly- 
nomial series, i.e. 

IJ 

f ( x )  = 2 U&". 
" = O  

Expanding the series, applying the summation of equation (25) to each term and 
collecting terms of the same power in x gives 

with 

Ck = U k ( 1  - KEK)-'. (28) 
It should be noted that for these cases S(x) is finite in the N +  cf limit when K < 1 and 
Eel. 

2.3.2. Fractionalpowers By delinition, self-similar systems retain the same scaling when 
they are constructed from scale-related sub-groups as they do in the terms of the 
elementary units. In this case the appropriate expression forf(r) of the sub-group will 
be either the CPA behaviour of equation (2) or the FPR behaviour of equation (5). 
Furthermore, the functional form of S(x) must be the same as that off(x) if the system 
is dynamically self-similar. This invariance can be demonstrated by substituting 

f ( x )  = (29) 
into equation (25) which gives 

s ( X )  = h - n ( l  + KE-* + K't-& + . . .). 
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Table 1. Examples of solutions to equation (25) for N approaching infinity. Note: (i) From 
the first line in the table we see that any function that can be expanded as a power series will 
give a solution. Other examples are given in the following three lines. AS we have already 
noted, any linearcombination ofsolutions isalso asolution. (ii) Functionswitha non-integer 
power exponent are theonly functions which are invariant in form under summation. These 
are given in the last two lines of the table. 

S(x) therefore retains the functional form off (x) and it is interesting to note that this 
remains the case even when self-similarity within the sub-groups is different from that 
ofthesub-groupsystem,i.e. CY # In K/ln c,withS(x) remainingfinite, atfinite frequency 
in theLimi tN~maslongasK~-"< l,i.e. 

CY > in K/ln f .  

When the system retains its self-similarity throughout, i.e. CY = In K/ln then S(x) is 
proportional to N (the number of sub-groups). , This has the effect of renormalising the 
frequency scale w o  to w$lll'" and hence of altering the upper frequency limit to the CPA 
behaviour in finite systems. An FPR function, equation ( 5 ) ,  for f (x) can be dealt with in 
a similar manner to the CPA behaviour of equation (30) and shown to be invariant in 
form under the self-similar summation of equation (25). Again, the frequency scale is 
renormalised when the self-similarity remains unchanged from that of the sub-group but 
this time with wo converted to oo/N1la. 

A number of functions which gives analytical solutions for S(x) in equation (25) 
according to sections 2.3.1 and 2.3.2 are listed in table 1 .  It should be noted that any 
arbitrary linear combination of solutions will also be a solution for S(x), and thus in 
general the rangeofpossiblesolutionsislarge. Only t h e c ~ ~  and FpRbehaviours however 
are invariant to self-similar rescaling and are therefore the allowed solutions when 
dynamic scaling exists in the system. Other patterns of behaviour represented by dif- 
ferent f (x )  therefore express the extent to which the system deviates from dynamic self- 
similarity. However the CPA and FPR forms must themselves be generated by a scaled 
system whose elementary circuit has a simple form for f(x) such as that described in 
section 2.1. Therefore some, if not all, of the algebraic expressions forf ( x )  listed in table 
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1 must be equivalent either to the CPA or FPR behaviour over a finite range of x .  This 
behaviour is hidden in the infinite summation representation and so we now turn to a 
formalism that explicitly reveals the dynamic scaling. 

R M Hill et a1 

2.4. Integral formalism 

In section 2.1 we showed how two scaled circuit models with 

f ( x ) = A ( l + x ) - ’  (32) 

could be solved to yield either CPA or FPR behaviour for the response over a system 
dependent frequency range. The exact solution obtained in section 2.3 however gives 
S(x) in the form of a polynomial series. Reconciliation of the two approaches requires 
that the polynomial series approximates to the power law dependence in the CPA or FPR 
behaviour for a limited range ofx. It is therefore possible that other functions forf(x) 
may behave in a similar manner even although this is not obvious from table 1. This 
difficulty is removed by adopting an integral approach to equation (25), which we now 
write as 

N 
S N ( x )  = lo k u f [ E u x ]  du. (33) 

This formalism not only allows us to deal with all integrable functions f ( x )  but also 
encompasses the possibility of self-similarity for which the scaling i s  continuous rather 
than by discrete steps (i.e. stochastic as well as deterministic fractals). 

Letting px = z be the new variable gives 

where Y = In K/ln E is the dynamic scaling exponent, equation (3). In this form we have 
abstracted the fractional power law dependence from the integral and the problem 
becomes one of defining the conditionsunder which the integral exists and isindependent 
of x .  Here the behaviour of f ( r )  as the limits z + 0 and z + m are approached is of 
central importance. 

We now discuss the possible solutions for S&). 

(a) 5 > 1 , ~  > 1 (i.e. v > 0): asolutionfor SN(x)cannowbesought in the limitx+ 0, 
but with N large enough so that at finite x ,  ENx approaches infinity. Equation (34) now 
becomes 

S N ( x )  = (x-”/ln 5) I* z ” - l f ( z )  dz = (x-./ln E)f *(v) x + o  (35) 
0 

where f *(v) is the Mellin transform off(z) (Sneddon 1972). This solution exists when 
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f * ( r )  is finite, and a cursory examination of the integral shows that this is ensured for 
v < 1 by the following restriction on the limiting behaviour off ( z ) ,  i.e. 

constant or zero as z + 0 

2 - p  (p = 1,2,3, .  . .) r+m. 

(b) 5 < 1, K < 1 (i.e. Y > 0): here we take x + -but ENx as small and approaching 
zero. In this case we find 

= (.-”/In 1/5)f*(v) X’m (37) 

which is finite under the same conditions, equations (36), as the solution in (a), i.e. 
equation (35). 

These two results both represent a CPA solution. The differences in valid frequency 
ranges (x -+ 0, x + m) refer only to the fact that in (a) the CPA behaviour appears at 
frequencies below a,,, whereas in (b) it appears above coo. It should be noted that the 
circuit model function f(x) = (1 + x)-’ complies with the restrictions (36) and hence 
gives the CPA behaviour under these conditions as deduced in section 2.1. The series 
model to parallel model inter-relationship of section 2.1 gives the complementary 
admittance expressions. However equation (7a) can be used to set up an equivalent 
expression to equation (34) with Y < 0 instead of Y > 0. In this case 

(38) Y(x) = S N ( X )  cc x’yl E >  1, K < 1OrE < 1, K >  1 

if 

(2) + [constant z+m 

ZP (p= 1,2,3, .  . .),Z-+O. 
(39) 

Examination of equation (7a) shows that the appropriate f ( x )  = x/(l + x) meets the 
requirements of equation (39), and hence the CPA results of section 2.1 are consistent 
with the solutions obtained in this section for more general forms off@). 

(c) When Y < 0 and 

f (z) + constant 2-0 (404 

a solution of the form of equation (35) or equation (37) is no longer valid because 
f *(v < 0) is no longer finite. In this case we have to integrate equation (34) by parts 
which gives 

= (1/1vl In E)(f(x) - E - N l ’ l f ( E N ~ )  + xlYl lEN z-l”lf‘(z) dr]  (42) 

wheref’(z) = df(z)/dz. 



9782 R M Hill et a1 

The existence of a solution now depends on the behaviour off‘(z) andf(z) as the 
limits of zero and infinity for z are approached. For the case where E > 1 (K < 1) we look 
for a solution as x+ 0 and ENx+ a. Here we require that 

If(ENx)IE””I < 1 % E N ,  E%- 
i.e. 

f ( z )  + constant or zero as z + W. 

The integral in equation (42) must also be finite and for this to be the case 

f,(z) + {constant orzero 2 4  0 

z -p (p=1,2 ,3)  2-m 

When these conditions are met the solution takes the form 

S N ( x )  = ( l / ~ ~ ~ I . ~ ) [ f ( O ) + x ~ ~ ~ ~ ’ r - ~ ~ ~ f ‘ ( z ) d z ]  x-0. (44) 

We note thatf(z) = (1 + z)-I, appropriate to the circuit models of section 2.1, fulfils 
the above conditions onf(z) andf’(z) = -(1 + z)-~. In this case SN(x)  takes the form 
of the FPR behaviour, equation (5). To make this more explicit we rewrite SN(x)  as 

0 

The restrictions given in equations (40a), (40b) and (43) onf(z) andf‘(z) therefore 
define the conditions under which the FPR form of response occurs for E > 1, K < 1. In 
the alternative range of E for which U < 0 (i.e. E < 1, K > 1) and for which we have to 
seek a solution in the x’ m range, there is no solution for S&). Thus, unlike the CPA, 
the FPR behaviour does not exist as a high frequency limit with respect to the frequency 
of the elementary circuit, oo. The FPR is thus inherently a low (w-0)  frequency 
response, which the inter-relationship of series and parallel circuit models shows may 
be observed either as an impedance or capacitance response when the required con- 
ditions are satisfied. 

2.5. Ranges of validiy 

In the previous section we derived expressions for SN(x)  by assuming that the lower and 
upper limits in the integrals of equations (34) and (41) could be extended to zero and 
infinity. For systemsofa finitesize thisapproximationisonly valid foraspecific frequency 
range which can be obtained by determining the conditions for which the residual terms 
are negligible. As the techniques are quite general we shall consider only one case, case 
(b), in detail and list the equivalent conditions for cases (a) and (c) in table 2. 

One of the conditions assumed in replacing equation (34) by equation (37) is that 

(x-”/ln[l/E]) z”-’f(z) dz (46) 
0 

approaches zero when E < 1 if x is large but eVx+ 0. As z is small over the whole 



Invariant behauiour classes for simple fractal circuiu 9783 



9784 

frequency range, andf(z) must approacheitherzeroor aconstant asz -+ 0,see equation 
(36), we can representf(2) by a power series x k = O  A k z k  to get 

R M Hill el a1 

(x-”/ln[l/E]) r*” Akzk++’+’ dz 
0 k = O  

=(X-”/hl[l/f]) Ak[fNX]k”(k f V ) - ’ - +  0. (47) 
k = O  

Only the first two terms in the series are important and these give 

(AoEN/v ln[l/E]) + ( A l ~ ~ ” t l ] x / [ l  + v ]  ln[l/E]) 4 1 (48) 
which, in the range f C 1 and large N (i.e. E-”’* l), reduces to 

(49) 
1 

x+-h(l/E)(l + ~ ) e - ~ ( ” + l )  
AI 

as an upper bound to the frequency range of validity of equation (37). 
The second condition comes from the requirement that 

(x-z/~n[l /~])  Im z ~ - l f ( z )  d ~ - +  o x + m  
x 

Here we can make use of the restriction, equation (36), to writef(z) as 
Substituting forf(z) and integrating gives 

Bkz-’ .  

and in this case we find a lower bound in the range of x for which the CPA solution, 
equation (37), isvalid, i.e. 

x%BI[ln(1/E)(1 - v ) ] - ’ .  (52) 
Equivalent bounds on the frequency ranges of the other two cases have been derived 
and are listed in table 2. 

3. Calculated response functions 

The polynomial approach developed in section 2.3 is an ideal basis for the computation 
of responses to any order in Nfor a suitable sub-group functionf(x). The functionf(x) 
is itself a spectral function but need not be either a relaxation function or a damped 
resonance. There are, however, limitations on the type of function that can be used in 
that it must yield a summable series on rescaling. Two such functions have been chosen; 
the relaxation functions of the simple circuit models of section 2.1, and an exponential 
frequency response. We report the dispersions calculated for these functions and exam- 
ine the frequency range of validity obtained from section 2.5 which are summarised in 
table 2. 

3.1. Thefunction (I + x)-’ 
In addition to being the response in the elementary circuit in the models of figure 1, 
(1 + x)-’  is the response function of adipole relaxingin aviscousmediumindependently 
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.lo - 5  b 

Figure 2. Log-log plots of the frequency dependence of the sM-impedance, equation (13) 
[or, equivalently, the m-capacitance of equation (7b)l with f ( x )  = (1 + x ) - ‘ .  The values of 
the scaling parameters are listed in table 3 together with the calculated and observed values 
of the exponent Y. The shaded regions on the frequency axis indicate the regions of validity 
of the scaling behaviour as determined in section 2.5. The real compenents of the responses 
are shown by the full curves and the imaginary components by the broken curves. CPA 
behaviour is shown in (i) to (iii) and FPR behaviour in (iv) and (v). 

of other dipoles and without modifying its environment (Dehye 1945), normalized to 
unit magnitude and loss peak frequency, i.e. 

(53) 
Forthisfonnoff(x) thecomputedresponsesshow that theDebye behaviourofequation 
(53) is modified when the dipoles form a self-similar system scaled both in frequency 
and magnitude. In figure 2(a) and (b) we present, diagrammatically, the computed 
responsesin log/logplots fora set of values of the scaling parametersK and E .  Asummary 
of the information contained in these plots is given in table 3. In the table we also list the 
frequency ranges over which the CPA or FPR approximations are calculated to apply from 
section 2.5, and the allowable ranges are indicated in the figures. It is seen that the 
calculated and computed exponents are satisfactorily close and that, to a degree, there 
is agreement between the postulated and computed ranges over which the anomalous 
frequency behaviour is found. Examples of all three parameter ranges, i.e. cases (a), 
(b) and (c) of section 2.4, are reported together with a single case for which the 
parameters violate the conditions of dynamic scaling. In the latter case the response 
reverts to the form given in equation (53). It should be noted that outside the frequency 
range wrhere CPA or FPR behaviour develops the computed response assumes the form 
of equation (53), i.e. that the limiting terms in the finite N summation form for S(x),  
equation (25), dominate in these regions. 

f(x) = 1/(1 + x )  = 1/[1 + ( O / w O ) ’ ]  - i(w/wo)/[l + ( W / W ~ ) ~ ] .  



9786 R M Hill et al 

Table3. Parameters used to obtain the responses presented in figures 2 and 3. 

Figure and plot No. E K 1' Case N xB X 4  YO& C N L d 

ii 2.25 1.5 ~ 0 . 5  (a) 20 7.4 X 1.2 0.51 

, ,. ,. , ,  , 1.11-1, 1., , , , , , ,.,,, ~ . .. . 
2. i 0.25 0.5 ~ 0 . 5  (b) 20 1.5 2.4 X lo'* 0.503 

iii 2.21 1.7 0.667 (a) 20 1 . 9 ~  10.' 1.3 0.65 
iv 2.5 0.8 -0.243 (c )  20 0. 0.17 -0.7.35 
V 1.2 0.9 -0.578 (c)  20 0 4.4 X 10.' -0.567 
vi 2.5 0.3 ~rl.31 - -- ~ ~. - Out of range 

3b i 1.1 0.95 -0.538 (c) 100 0 2.4 x lW7 -0.46 
i i  1.05 0.97 -0.624 (c) 300 0 1.1 X 10.' -0.58 
iii 1.03 0.985 -0.511 (c) 500 0.- .~ ~~ 7.4 X 10.' -0.50 

*Fororf(x) = (1 tx) - ' :Ao= l;Al = -1;Ai = 1 ; A ;  = 2 ; E ,  = 1. 
Forf(x) = exp(-x).Al = -1;A; = 1;A; = 1. A.,A:, and8,areasdefinedin table2. 

3.2. The function exp(-x) 

As an example of a function which is not a dispersion relationship we have chosen 

f(x) = exp(-x) = cos(w/w,) - isin(w/wo). (54) 

In this case S(x) could only be calculated with any accuracy for a limited range of x and 
Eclose tounityand thisrequiredlargevaluesofN. Forsgreaterthanunitytheoscillatory 
nature of / ( x )  in equation (46) led to considerable difficulty in obtaining convergent 
solutions and hence this range of frequencies is not reported. However even for this 
highly artificial elementary response function the FPR is able to dominate the response 
over a given frequency range, as can be seen in figure 3. It therefore seems likely that an 
anomalous frequency dependnece of the CPA or FPR type will develop over a limited 
frequency range in scaled systems regardless of the functional form of the response of 
the combined elements which make up the scaled elementary unit. 

4. Discussion and summary 

In  this paper we have identified the existence of WO distinct classes of dynamic scaling 
equations, equations (1) and (17), for the response of scaled circuit systems. Such 
systems are important for the understanding of dielectric responses originating in either 
molecular dipoleor ion displacements because the relaxation response of an independent 
site dipole can be represented by the series resistancexapacitance of the elementary 
circuit. This equivdence is the basis for the equivalent circuit description of the dielectric 
response of materials (Macdonald 1987). Formally the capacitance responsef(x), of a 
molecular (site) dipole is given by the Laplace transform (imaginary argument) of a 
response function (Kubo 1957) which must be constant at zero time and approach zero 
as time approaches infinity, hencef(x) must tend to zero as x + CC and to a constant as 
x-+ 0. Therefore in the dielectric relaxation (i.e. capacitance response) of molecular 
dipolar systems as of that of true local circuits,f(x) has a form which meets the require- 
ments (see section 2.4) for the appearance of CPA or FPR behaviour, provided that the 
dipole magnitudes and relaxation times scale appropriately. 
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40 .5 0 

Log [w/w,l 
Figure 3. An equivalent set of plots to those presented in figure 2 but using the function 
f ( x )  = exp(-x). The relevant parameters for these plots are also presented in table 3.  

_L_..--..-- 
Figure 4. Log-log plots of the dielectric sus- 
ceptibility [m opaatance] of a crystal of TGS as 
measuredand reported byPawlaczykerol(1978). 
The real, F‘(o),  and imaginary F”(o), mm- 
ponent values have been plotted as circles and 
the values for F’(o = 0) - F’(w) as crosses. The 
latter obeys the mndynamicscalingequation (17) 

1 ri1 1.0 10 102 103 at frequencies below 3 Hz and is thus equivalent 
in form to case (c) of table 3, see figure 3.  Frequency IHz) 

The equivalence between f(x) for a relaxating molecular dipole and an elementary 
circuit is a purely formal one and does not imply the existence of actual resistance and 
capacitance elements such as might be expected in biological tissues, for example 
(Dissado 1990), however it does allow the capacitance and impedance responses of both 
types of material system to be considered in the same theoretical framework. Here we 
have concentrated on establishing the rules which govern the appearance of the two 
different classes of dynamic scaling. These rules are expressed in terms of the amplitude 
(K) and timescale ( E )  ratios in a scaled circuit system, which is an essential requirement 
for the appearance of either of the two dynamic scaling behaviours, i.e. the CPA and FPR 
classes. We have adopted this approach in order to retain generality in our results. 
Specific fractal model constructions will reduce to one or other of our scaling circuit 
systems with specific values for K and dependent upon the appropriate fractal dimen- 
sions, as we have described in section 2.2. The rules can thus be used quite generally to 
determine the class of dynamic response for a given fractal system and the value of the 
anomalous exponent to be expected. Parameter ranges for which the response will 
show no anaomalous behaviour, regardless of the existence of scaling, have also been 
determined. 

It should be noted that physical systems have a finite sue and hence any fractal 
structure they may possess will be limited to a finite number of embeddings ( N ) .  In this 
case the anomalous CPA or FPR response will only appear over a limited frequency 
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range. Analytical expressions for the frequencies at which the anomalous responses are 
truncated have been obtained in section 2.4 for the case in which the system response 
can be represented by an integral formalism. Such a formalism is likely to be more 
appropriate to the stochastic fractals of physical systems than to the constructed deter- 
ministiccircuits describedin section 3. In this latter case the resultsshow that anomalous 
behaviour may be found for relatively small numbers of embeddings (N = 20) (see table 
3) but that their range of validity as determined in section 2.4 only gave a guide to the 
computed range. Better agreement can be expected if large values of N are used or when 
the fractal circuit construction is stochastic. 

Of the two classes of dynamic scaling identified here, the first class is well known (see 
Liu 1985) and obeys the equation 

R M Hill et al 

z(W) = K Z ( 5 W )  K ,  E >  1 O T K ,  E <  1 (1) 

Z(w) a (io)-” (2) 

which has a solution in the form of the CPA behaviour 
1 > v = In x/ln 5 = 1 - dr/dw > 0 

and has long been recognised to exist in the dielectric response of materials (see Cole 
1972, Jonscher 1983). An origin in terms of dynamically scaled dipole relaxations has 
been incorporated into many molecular models (e.g. Klafter and Schlesinger 1986, 
Dissado and Hill 1989). Intuitively it is easy to see how such a scaling system may be 
established once it is acknowledged that the motion of the individual dipoles can couple 
to displacements in their environment and hence indirectly to one another. Just as with 
systems approachinga critical point (Hohenberg and Halperin 1977), the larger the total 
dipole of the group ( K  > 1) the slower the response ( 5  > 1) and the CPA response follows 
if the groups are self-similarly related (e.g. Dissado and Hill 1987). 

The second class of dynamic scaling equation we have derived, i.e. 
F(o = 0) - F ( o )  = K[F(w = 0) - F ( E o ) ]  K < 1 , 5 < 1  (17) 

with 

F(w) = Z(w) or C(o) 
has not previously been given explicit form though its existence has been foreshadowed 
on the basis of the analysis of experimental data (Dissado and Hill 1987). The solution 
to this class of dynamic scaling equation is the FPR behaviour 

F ( o )  = 1 - a(iw)l’I 1 > I v I = In[ l /~] / ln  5 > 0 (5) 
which has also been recognised in the experimental response of many materials (see 
Jonscher 1983, Hill 1978), an example of which is given in figure 4. Specificcircuit models 
have been shown to give this reponse (Hill and Dissado 1988, Dissado and Hill 1988) 
although only one molecular model, to date, (Dissado and Hill 1989) incorporates the 
FPR in its response function. One reason for this may be the difficulty in recognising its 
appearance, although theapplicationofequation (17), asshowninfigure4, shouldmake 
this easier. Another reason is likely to be the difficulty associated with envisaging a 
molecular situation in which the dielectricincrement contributed by asub-group reduces 
(K < 1) as the relaxation rate reduces ( 5  > 1), i.e. the smaller the group dipole the slower 
its relaxation. However, one type of system comes to mind. Consider a system in which 
small regions are constrained from moving by larger regions that surround them and for 
which they, in their turn, constrain smaller units, etc. Such a picture may well apply to 
a glassy material. In this case the smaller groups cannot relax until the larger groups 
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have first responded and a dynamic scaling relationship between size and relaxation time 
will lead to an FPR behaviour at low frequencies. Although this picture is similar to 
that proposed by Palmer et a1 (1984) for the or-process in glass forming systems, its 
identification with the new scaling class leads to an exact behavioural form (equation 
(5)) which differs from the approximate form obtained by these workers. 

In their simplest form the requirements for FPR behaviour define a system that is 
approaching equilibrium, namely that the incremental contribution of relaxing groups 
gets progressively smaller as equilibrium is approached, with the groups being self- 
similarly related. It has been argued, on the basis of experimental observation, that 
this is a general feature of the linear regression (Dissado and Hill 1987) of structural 
fluctuations. The identification here of the dynamic scaling equation and the derivation 
of the conditions governing its appearance can therefore be expected to contribute to 
an understanding of the approach to equilibrium of natural fluctuations in real systems. 
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